Opposing Activity Changes in AMP Deaminase and AMP-Activated Protein Kinase in the Hibernating Ground Squirrel
نویسندگان
چکیده
Hibernating animals develop fatty liver when active in summertime and undergo a switch to a fat oxidation state in the winter. We hypothesized that this switch might be determined by AMP and the dominance of opposing effects: metabolism through AMP deaminase (AMPD2) (summer) and activation of AMP-activated protein kinase (AMPK) (winter). Liver samples were obtained from 13-lined ground squirrels at different times during the year, including summer and multiples stages of winter hibernation, and fat synthesis and β-fatty acid oxidation were evaluated. Changes in fat metabolism were correlated with changes in AMPD2 activity and intrahepatic uric acid (downstream product of AMPD2), as well as changes in AMPK and intrahepatic β-hydroxybutyrate (a marker of fat oxidation). Hepatic fat accumulation occurred during the summer with relatively increased enzymes associated with fat synthesis (FAS, ACL and ACC) and decreased enoyl CoA hydratase (ECH1) and carnitine palmitoyltransferase 1A (CPT1A), rate limiting enzymes of fat oxidation. In summer, AMPD2 activity and intrahepatic uric acid levels were high and hepatic AMPK activity was low. In contrast, the active phosphorylated form of AMPK and β-hydroxybutyrate both increased during winter hibernation. Therefore, changes in AMPD2 and AMPK activity were paralleled with changes in fat synthesis and fat oxidation rates during the summer-winter cycle. These data illuminate the opposing forces of metabolism of AMP by AMPD2 and its availability to activate AMPK as a switch that governs fat metabolism in the liver of hibernating ground squirrel.
منابع مشابه
Alterations in AMP deaminase activity and kinetics in skeletal muscle of creatine kinase-deficient mice.
Alterations in the competency of the creatine kinase system elicit numerous structural and metabolic compensations, including changes in purine nucleotide metabolism. We evaluated molecular and kinetic changes in AMP deaminase from skeletal muscles of mice deficient in either cytosolic creatine kinase alone (M-CK-/-) or also deficient in mitochondrial creatine kinase (CK-/-) compared with wild ...
متن کاملEvaluation of the role of AMP-activated protein kinase and its downstream targets in mammalian hibernation.
Mammalian hibernation requires an extensive reorganization of metabolism that typically includes a greater than 95% reduction in metabolic rate, selective inhibition of many ATP-consuming metabolic activities and a change in fuel use to a primary dependence on the oxidation of lipid reserves. We investigated whether the AMP-activated protein kinase (AMPK) could play a regulatory role in this re...
متن کاملThe Effect of Eight Weeks Aerobic and Resistance Training on AMP-Activated Protein Kinase (AMPK) Gene Expression in Soleus Muscle and Insulin Resistance of STZ-Induced Diabetic Rat
Background: AMPK regulation is one of biggest target in T2D and metabolic syndrome research. Therefore, the present study is aimed to investigate The effect of 8 weeks aerobic and Resistance training on AMP-activated protein kinase (AMPK) gene expression in soleus muscle and insulin resistance of STZ-induced diabetic rat. Methods: The research method of present study was experimental. For this...
متن کاملModulation of mammalian cardiac AMP deaminase by protein kinase C-mediated phosphorylation.
Using AMP deaminase (AMP aminohydrolase; EC 3.5.4.6) purified from rabbit left-ventricular heart tissue, we report direct investigation of the potential for cardiac AMP deaminase activity to be regulated by kinase-mediated phosphorylation. Rabbit heart AMP deaminase served as a substrate for Ca2+/phospholipid-dependent protein kinase (protein kinase C; PKC) exclusively; no other mammalian prote...
متن کاملRegulation of autophagy by AMP-activated protein kinase/ sirtuin 1 pathway reduces spinal cord neurons damage
Objective(s): AMP-activated protein kinase/sirtuin 1 (AMPK/SIRT1) signaling pathway has been proved to be involved in the regulation of autophagy in various models. The aim of this study was to evaluate the effect of AMPK/SIRT1 pathway on autophagy after spinal cord injury (SCI). Materials and Methods:The SCI model was established in rats in vivo and the primary spinal cord neurons were subject...
متن کامل